Citations文献/文章

您可通过下方引文搜索引擎搜索Promega为您推荐的产品应用文章。从“应用方向”中选择一个或多个应用方向,并/或在文本框中直接输入搜索关键词。 引文来自使用Promega产品的出版物。搜索结果将包括期刊名称、文章标题、发表作者、关键

首页 > 资源 > 文献/文章 > 引文搜索

引文搜索指导

查看引文搜索小技巧

我们的引文数据库包含引用Promega产品的同行评审期刊文章。有以下多种方法可以搜索引文:

  • 在文本字段中直接输入关键词(包括目录号、产品名称或作者)。
  • 在“选择应用方向”列表中选择一个或多个“应用方向”。
  • 选择应用方向并输入关键词。直接按照文章发表年份搜索。

对于使用特定Promega产品的引文,我们建议您按产品名称或目录号进行搜索。对于范围更广的搜索,建议您选择一个或两个应用方向查看结果,然后通过向搜索条件添加关键词来缩小焦点。
符合搜索条件的引文将按时间倒序显示(较新的引用文章优先显示)。关于特定产品的更多信息,请参阅 引文及技术文章分析或 操作说明。

筛选项清空

研究/应用方向

产品/技术

  • Identification of Interactions between Sindbis Virus Capsid Protein and Cytoplasmic vRNA as Novel Virulence Determinants

    PLoS Pathog | 2017 | 查看原文 |

    作者:Kevin J Sokoloski, Lauren M Nease, Nicholas A May, Natasha N Gebhart, Claire E Jones, Thomas E Morrison, Richard W Hardy

    摘要:Alphaviruses are arthropod-borne viruses that represent a significant threat to public health at a global level. While the formation of alphaviral nucleocapsid cores, consisting of cargo nucleic acid and the viral capsid protein, is an essential molecular process of infection, the precise interactions between the two partners are ill-defined. A CLIP-seq approach was used to screen for candidate sites of interaction between the viral Capsid protein and genomic RNA of Sindbis virus (SINV), a model alphavirus. The data presented in this report indicates that the SINV capsid protein binds to specific viral RNA sequences in the cytoplasm of infected cells, but its interaction with genomic RNA in mature extracellular viral particles is largely non-specific in terms of nucleotide sequence. Mutational analyses of the cytoplasmic viral RNA-capsid interaction sites revealed a functional role for capsid binding early in infection. Interaction site mutants exhibited decreased viral growth kinetics; however, this defect was not a function of decreased particle production. Rather mutation of the cytoplasmic capsid-RNA interaction sites negatively affected the functional capacity of the incoming viral genomic RNAs leading to decreased infectivity. Furthermore, cytoplasmic capsid interaction site mutants are attenuated in a murine model of neurotropic alphavirus infection. Collectively, the findings of this study indicate that the identified cytoplasmic interactions of the viral capsid protein and genomic RNA, while not essential for particle formation, are necessary for genomic RNA function early during infection. This previously unappreciated role of capsid protein during the alphaviral replication cycle also constitutes a novel virulence determinant.
    展开

    关键词:甲病毒,α病毒,CLIP-seq,病毒衣壳蛋白,萤光素酶报告基因

    应用产品:Nano-Glo® Luciferase Assay

  • Evidence that Receptor Destruction by the Sendai Virus Hemagglutinin-Neuraminidase Protein Is Responsible for Homologous Interference

    J Virol | 2016 | 查看原文 |

    作者:Hideo Goto, Keisuke Ohta, Yusuke Matsumoto, Natsuko Yumine, Machiko Nishio

    摘要:Receptor destruction has been considered one of the mechanisms of homologous Sendai virus (SeV) interference. However, direct evidence of receptor destruction upon virus infection and its relevance to interference is missing. To investigate a precise mechanism of homologous interference, we established SeV persistently infected cells. The persistently infected cells inhibited superinfection by homologous SeV but supported replication of human parainfluenza virus 2 (hPIV2) and influenza A virus (IAV). We confirmed that SeV particles could not attach to or penetrate the infected cells and that the hemagglutinin-neuraminidase (HN) protein of SeV was involved in the interference. Lectin blot assays showed that the α2,3-linked sialic acids were specifically reduced in the SeV-infected cells, but the level of α2,6-linked sialic acids had not changed. As infection with IAV removed both α2,3- and α2,6-linked sialic acids, especially α2,3-linked sialic acids, IAV-infected cells inhibited superinfection of SeV. These results provide concrete evidence that destruction of the specific SeV receptor, α2,3-linked sialic acids, is relevant to homologous interference by SeV.
    展开

    关键词:同源仙台病毒(SeV),人副流感病毒2(hPIV2),甲型流感病毒(IAV),病毒复制

    应用产品:Nano-Glo® Live Cell Assay System

  • Entirely plasmid-based reverse genetics system for rotaviruses

    Proc Natl Acad Sci U S A | 2017 | 查看原文 |

    作者:Yuta Kanai, Satoshi Komoto, Takahiro Kawagishi, Ryotaro Nouda, Naoko Nagasawa, Misa Onishi, Yoshiharu Matsuura, Koki Taniguchi, Takeshi Kobayashi

    摘要:Rotaviruses (RVs) are highly important pathogens that cause severe diarrhea among infants and young children worldwide. The understanding of the molecular mechanisms underlying RV replication and pathogenesis has been hampered by the lack of an entirely plasmid-based reverse genetics system. In this study, we describe the recovery of recombinant RVs entirely from cloned cDNAs. The strategy requires coexpression of a small transmembrane protein that accelerates cell-to-cell fusion and vaccinia virus capping enzyme. We used this system to obtain insights into the process by which RV nonstructural protein NSP1 subverts host innate immune responses. By insertion into the NSP1 gene segment, we recovered recombinant viruses that encode split-green fluorescent protein-tagged NSP1 and NanoLuc luciferase. This technology will provide opportunities for studying RV biology and foster development of RV vaccines and therapeutics.
    展开

    关键词:报告基因病毒,反向遗传学,轮状病毒,疫苗

    应用产品:Nano-Glo® Luciferase AssayDual-Luciferase® Reporter Assay System

  • Bioluminescent Ross River Virus Allows Live Monitoring of Acute and Long-Term Alphaviral Infection by In Vivo Imaging

    Viruses | 2019 | 查看原文 |

    作者:Essia Belarbi, Vincent Legros, Justine Basset, Philippe Desprès, Pierre Roques, Valérie Choumet

    摘要:Arboviruses like chikungunya and Ross River (RRV) are responsible for massive outbreaks of viral polyarthritis. There is no effective treatment or vaccine available against these viruses that induce prolonged and disabling arthritis. To explore the physiopathological mechanisms of alphaviral arthritis, we engineered a recombinant RRV expressing a NanoLuc reporter (RRV-NLuc), which exhibited high stability, near native replication kinetics and allowed real time monitoring of viral spread in an albino mouse strain. During the acute phase of the disease, we observed a high bioluminescent signal reflecting viral replication and dissemination in the infected mice. Using Bindarit, an anti-inflammatory drug that inhibits monocyte recruitment, we observed a reduction in viral dissemination demonstrating the important role of monocytes in the propagation of the virus and the adaptation of this model to the in vivo evaluation of treatment strategies. After resolution of the acute symptoms, we observed an increase in the bioluminescent signal in mice subjected to an immunosuppressive treatment 30 days post infection, thus showing active in vivo replication of remnant virus. We show here that this novel reporter virus is suitable to study the alphaviral disease up to the chronic phase, opening new perspectives for the evaluation of therapeutic interventions.
    展开

    关键词:罗斯河病毒,α病毒,体内成像,病毒持久性

    应用产品:Nano-Glo® Luciferase Assay

  • Molecular Function Analysis of Rabies Virus RNA Polymerase L Protein by Using an L Gene-Deficient Virus

    J Virol | 2017 | 查看原文 |

    作者:Kento Nakagawa, Yuki Kobayashi, Naoto Ito, Yoshiyuki Suzuki, Kazuma Okada, Machiko Makino, Hideo Goto, Tatsuki Takahashi, Makoto Sugiyama 

    摘要:While the RNA-dependent RNA polymerase L protein of rabies virus (RABV), a member of the genus Lyssavirus of the family Rhabdoviridae, has potential to be a therapeutic target for rabies, the molecular functions of this protein have remained largely unknown. In this study, to obtain a novel experimental tool for molecular function analysis of the RABV L protein, we established by using a reverse genetics approach an L gene-deficient RABV (Nishi-ΔL/Nluc), which infects, propagates, and correspondingly produces NanoLuc luciferase in cultured neuroblastoma cells transfected to express the L protein. trans-Complementation with wild-type L protein, but not that with a functionally defective L protein mutant, efficiently supported luciferase production by Nishi-ΔL/Nluc, confirming its potential for function analysis of the L protein. Based on the findings obtained from comprehensive genetic analyses of L genes from various RABV and other lyssavirus species, we examined the functional importance of a highly conserved L protein region at positions 1914 to 1933 by a trans-complementation assay with Nishi-ΔL/Nluc and a series of L protein mutants. The results revealed that the amino acid sequence at positions 1929 to 1933 (NPYNE) is functionally important, and this was supported by other findings that this sequence is critical for binding of the L protein with its essential cofactor, P protein, and thus also for L protein's RNA polymerase activity. Our findings provide useful information for the development of an anti-RABV drug targeting the L-P protein interaction.IMPORTANCE To the best of our knowledge, this is the first report on the establishment of an L gene-deficient, reporter gene-expressing virus in all species of the order Mononegavirales, also highlighting its applicability to a trans-complementation assay, which is useful for molecular function analyses of their L proteins. Moreover, this study revealed for the first time that the NPYNE sequence at positions 1929 to 1933 in the RABV L protein is important for L protein's interaction with the P protein, consistent with and extending the results of a previous study showing that the P protein-binding domain in the L protein is located in its C-terminal region, at positions 1562 to 2127. This study indicates that the NPYNE sequence is a promising target for the development of an inhibitor of viral RNA synthesis, which has high potential as a therapeutic drug for rabies.
    展开

    关键词:L基因缺陷病毒,RNA聚合酶,磷蛋白,狂犬病病毒

    应用产品:Nano-Glo® Luciferase Assay

  • A NanoLuc Luciferase Reporter Pseudorabies Virus for Live Imaging and Quantification of Viral Infection

    Front Vet Sci | 2020 | 查看原文 |

    作者:Yalin Wang, Hongxia Wu, Bing Wang, Hansong Qi, Zhao Jin, Hua-Ji Qiu, Yuan Sun

    摘要:Pseudorabies (PR), also known as Aujeszky's disease, is an acute infectious disease of pigs, resulting in significant economic losses to the pig industry in many countries. Since 2011, PR outbreaks have occurred in many Bartha-K61-vaccinated pig farms in China. The emerging pseudorabies virus (PRV) variants possess higher pathogenicity in pigs and mice than the strains isolated before. Here, a recombinant PRV (rPRVTJ-NLuc) stably expressing the NanoLuc (NLuc) luciferase fusion with the red fluorescent protein (DsRed) was constructed to trace viral replication and spread in mice. Moreover, both DsRed and NLuc luciferases were stably expressed in the infected cells, and there was no significant difference between wild-type and recombinant viruses in both growth kinetics and pathogenicity. Seven-week-old BALB/c mice were infected with 103 50% tissue culture infective dose rPRVTJ-NLuc and subjected to daily imaging. The mice infected with rPRVTJ-NLuc displayed robust bioluminescence that started 4 days postinfection (dpi), bioluminescence signal increased over time, peaked at 5 dpi, remained detectable for at least 6 dpi, and disappeared at 7 dpi, meanwhile, the increased flux accompanied by the spread of the virus from the injection site to the superior respiratory tract. However, the signal was also observed in the spinal cord, trigeminal ganglion, and partial region of the brain from separated tissues, not in living mice. Our results depicted a new approach to rapidly access the replication and pathogenicity of emerging PRVs in mice.
    展开

    关键词:NanoLuc luciferase,活体成像, 伪狂犬病病毒

    应用产品:Nano-Glo® Luciferase AssayPromoterless NanoLuc® Genetic Reporter Vectors with Hygromycin Selection

  • Construction of a Recombinant Porcine Epidemic Diarrhea Virus Encoding Nanoluciferase for High-Throughput Screening of Natural Antiviral Products

    Viruses | 2021 | 查看原文 |

    作者:Wan Li, Mengjia Zhang, Huijun Zheng, Peng Zhou, Zheng Liu, Anan Jongkaewwattana, Rui Luo, Qigai He

    摘要:Porcine epidemic diarrhea virus (PEDV) is the predominant cause of an acute, highly contagious enteric disease in neonatal piglets. There are currently no approved drugs against PEDV infection. Here, we report the development of a nanoluciferase (NLuc)-based high-throughput screening (HTS) platform to identify novel anti-PEDV compounds. We constructed a full-length cDNA clone for a cell-adapted PEDV strain YN150. Using reverse genetics, we replaced the open reading frame 3 (ORF3) in the viral genome with an NLuc gene to engineer a recombinant PEDV expressing NLuc (rPEDV-NLuc). rPEDV-NLuc produced similar plaque morphology and showed similar growth kinetics compared with the wild-type PEDV in vitro. Remarkably, the level of luciferase activity could be stably detected in rPEDV-NLuc-infected cells and exhibited a strong positive correlation with the viral titers. Given that NLuc expression represents a direct readout of PEDV replication, anti-PEDV compounds could be easily identified by quantifying the NLuc activity. Using this platform, we screened for the anti-PEDV compounds from a library of 803 natural products and identified 25 compounds that could significantly inhibit PEDV replication. Interestingly, 7 of the 25 identified compounds were natural antioxidants, including Betulonic acid, Ursonic acid, esculetin, lithocholic acid, nordihydroguaiaretic acid, caffeic acid phenethyl ester, and grape seed extract. As expected, all of the antioxidants could potently reduce PEDV-induced oxygen species production, which, in turn, inhibit PEDV replication in a dose-dependent manner. Collectively, our findings provide a powerful platform for the rapid screening of promising therapeutic compounds against PEDV infection.
    展开

    关键词:PEDV,抗病毒化合物,高通量筛选,nanoluciferase,反向遗传学系统

    应用产品:Nano-Glo® Luciferase Assay

  • Orally efficacious broad-spectrum allosteric inhibitor of paramyxovirus polymerase

    Nat Microbiol | 2020 | 查看原文 |

    作者:Robert M Cox, Julien Sourimant, Mart Toots, Jeong-Joong Yoon, Satoshi Ikegame, Mugunthan Govindarajan, Ruth E Watkinson, Patricia Thibault, Negar Makhsous, Michelle

    摘要:Paramyxoviruses such as human parainfluenza virus type-3 (HPIV3) and measles virus (MeV) are a substantial health threat. In a high-throughput screen for inhibitors of HPIV3 (a major cause of acute respiratory infection), we identified GHP-88309-a non-nucleoside inhibitor of viral polymerase activity that possesses unusual broad-spectrum activity against diverse paramyxoviruses including respiroviruses (that is, HPIV1 and HPIV3) and morbilliviruses (that is, MeV). Resistance profiles of distinct target viruses overlapped spatially, revealing a conserved binding site in the central cavity of the viral polymerase (L) protein that was validated by photoaffinity labelling-based target mapping. Mechanistic characterization through viral RNA profiling and in vitro MeV polymerase assays identified a block in the initiation phase of the viral polymerase. GHP-88309 showed nanomolar potency against HPIV3 isolates in well-differentiated human airway organoid cultures, was well tolerated (selectivity index > 7,111) and orally bioavailable, and provided complete protection against lethal infection in a Sendai virus mouse surrogate model of human HPIV3 disease when administered therapeutically 48 h after infection. Recoverees had acquired robust immunoprotection against reinfection, and viral resistance coincided with severe attenuation. This study provides proof of the feasibility of a well-behaved broad-spectrum allosteric antiviral and describes a chemotype with high therapeutic potential that addresses major obstacles of anti-paramyxovirus drug development.
    展开

    关键词:副粘病毒,人副流感病毒3型(HPIV3),抑制剂,高通量筛选,抗病毒药物

    应用产品:Nano-Glo® Live Cell Assay SystemPromoter-Driven Control NanoLuc® Luciferase Vectors

  • Rescue of dual reporter-tagged parainfluenza virus 5 as tool for rapid screening of antivirals in vitro

    Vet Microbiol | 2021 | 查看原文 |

    作者:Fuxiao Liu, Qianqian Wang, Hu Shan

    摘要:Parainfluenza virus 5 (PIV5) belongs to the genus Orthorubulavirus in the family Paramyxoviridae. PIV5 can infect a range of mammals, but induce mild or even unobservable clinical signs in some animals, except kennel cough in dogs. It is also able to infect a variety of cell lines, but causes minimal or even invisible cytopathic effects on many cells. Sometimes, owing to neither observable cytopathic effects in vitro nor typical clinical signs in vivo, the PIV5 is not easily usable for screening antiviral drugs. To solve this issue, we used reverse genetics to recover a dual reporter-tagged recombinant PIV5 that could simultaneously express enhanced green fluorescence protein (eGFP) and NanoLuc® luciferase (NLuc) in virus-infected cells. Both reporters were genetically stable during twenty serial passages of virus in MDBK cells. The eGFP allowed us to observe virus-infected MDBK cells in real time, and moreover the NLuc made it possible to quantify the degree of viral replication for determining antiviral activity of a given drug. Subsequently, the recombinant PIV5 was used for antiviral assays on five common drugs, i.e., ribavirin, apigenin, 1-adamantylamine hydrochloride, moroxydine hydrochloride and tea polyphenol. The results showed that only the ribavirin had an anti-PIV5 effect in MDBK cells. This study proposed a novel method for rapid screening (or prescreening) of anti-PIV5 drugs.
    展开

    关键词:抗病毒药物,双报告基因,副流感病毒5,快速筛选,反向遗传学,利巴韦林

    应用产品:Nano-Glo® Live Cell Assay System

  • In Vivo Live Imaging of Oncolytic Mammalian Orthoreovirus Expressing NanoLuc Luciferase in Tumor Xenograft Mice

    J Virol | 2019 | 查看原文 |

    作者:Yuta Kanai, Takahiro Kawagishi, Yoshiharu Matsuura, Takeshi Kobayashi

    摘要:Wild-type mammalian reoviruses (MRVs) have been evaluated as oncolytic agents against various cancers; however, genetic modification methods for improving MRV agents have not been exploited fully. In the present study, using MRV strain T1L, we generated a reporter MRV that expresses a NanoLuc luciferase (NLuc) gene and used it for noninvasive imaging of MRV infection in tumor xenograft mice. NLuc and a P2A self-cleaving peptide gene cassette were placed upstream of the L1 gene open reading frame to enable bicistronic expression of NLuc and the L1 gene product. BALB/c nude mice intranasally infected with MRV expressing NLuc (rsT1L-NLuc) displayed bioluminescent signals in the chest area at 4 days postinfection (dpi), which is consistent with natural MRV infection in the lung. Furthermore, to monitor tumor-selective infection by MRV, nude mice bearing human cancer xenografts were infected intravenously with rsT1L-NLuc. Bioluminescent signals were detected in tumors as early as 3 dpi and persisted for 2 months. The results demonstrate the utility of an autonomous replicating reporter MRV for noninvasive live imaging of replicating oncolytic MRV agents.IMPORTANCE Engineering of recombinant MRV for improved oncolytic activity has not yet been achieved due to difficulty in generating autonomous replicating MRV harboring transgenes. Here, we constructed a reporter MRV that can be used to monitor cancer-selective infection by oncolytic MRV in a mouse model. Among the numerous oncolytic viruses, MRV has an advantage in that the wild-type virus shows marked oncolytic activity in patients without any notable adverse effects. The reporter MRV developed herein will open avenues to the development of recombinant MRV vectors armed with anticancer transgenes.
    展开

    关键词:癌症治疗,哺乳动物正呼肠孤病毒,溶瘤病毒,报告基因病毒

    应用产品:Nano-Glo® Luciferase Assay

筛选项
清空
研究/应用方向
产品/技术
取消
确认