Citations文献/文章

您可通过下方引文搜索引擎搜索Promega为您推荐的产品应用文章。从“应用方向”中选择一个或多个应用方向,并/或在文本框中直接输入搜索关键词。 引文来自使用Promega产品的出版物。搜索结果将包括期刊名称、文章标题、发表作者、关键

首页 > 资源 > 文献/文章 > 引文搜索

引文搜索指导

查看引文搜索小技巧

我们的引文数据库包含引用Promega产品的同行评审期刊文章。有以下多种方法可以搜索引文:

  • 在文本字段中直接输入关键词(包括目录号、产品名称或作者)。
  • 在“选择应用方向”列表中选择一个或多个“应用方向”。
  • 选择应用方向并输入关键词。直接按照文章发表年份搜索。

对于使用特定Promega产品的引文,我们建议您按产品名称或目录号进行搜索。对于范围更广的搜索,建议您选择一个或两个应用方向查看结果,然后通过向搜索条件添加关键词来缩小焦点。
符合搜索条件的引文将按时间倒序显示(较新的引用文章优先显示)。关于特定产品的更多信息,请参阅 引文及技术文章分析或 操作说明。

筛选项清空

研究/应用方向

产品/技术

  • Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses

    Sci Transl Med | 2017 | 查看原文 |

    作者:Timothy P Sheahan, Amy C Sims, Rachel L Graham, Vineet D Menachery, Lisa E Gralinski, James B Case, Sarah R Leist, Krzysztof Pyrc, Joy Y Feng, Iva Trantcheva,&#

    摘要:Emerging viral infections are difficult to control because heterogeneous members periodically cycle in and out of humans and zoonotic hosts, complicating the development of specific antiviral therapies and vaccines. Coronaviruses (CoVs) have a proclivity to spread rapidly into new host species causing severe disease. Severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) successively emerged, causing severe epidemic respiratory disease in immunologically naïve human populations throughout the globe. Broad-spectrum therapies capable of inhibiting CoV infections would address an immediate unmet medical need and could be invaluable in the treatment of emerging and endemic CoV infections. We show that a nucleotide prodrug, GS-5734, currently in clinical development for treatment of Ebola virus disease, can inhibit SARS-CoV and MERS-CoV replication in multiple in vitro systems, including primary human airway epithelial cell cultures with submicromolar IC50 values. GS-5734 was also effective against bat CoVs, prepandemic bat CoVs, and circulating contemporary human CoV in primary human lung cells, thus demonstrating broad-spectrum anti-CoV activity. In a mouse model of SARS-CoV pathogenesis, prophylactic and early therapeutic administration of GS-5734 significantly reduced lung viral load and improved clinical signs of disease as well as respiratory function. These data provide substantive evidence that GS-5734 may prove effective against endemic MERS-CoV in the Middle East, circulating human CoV, and, possibly most importantly, emerging CoV of the future.
    展开

    关键词:抗病毒疗法,疫苗开发,冠状病毒(CoV),埃博拉病毒,中东呼吸综合征

    应用产品:CellTiter-Glo® One Solution AssayNano-Glo® Live Cell Assay System

  • Establishment of a Virulent Full-Length cDNA Clone for Type I Feline Coronavirus Strain C3663

    J Virol | 2019 | 查看原文 |

    作者:Yutaka Terada, Yudai Kuroda, Shigeru Morikawa, Yoshiharu Matsuura, Ken Maeda, Wataru Kamitani

    摘要:Feline infectious peritonitis (FIP) is one of the most important infectious diseases in cats and is caused by feline coronavirus (FCoV). Tissue culture-adapted type I FCoV shows reduced FIP induction in experimental infections, which complicates the understanding of FIP pathogenesis caused by type I FCoV. We previously found that the type I FCoV strain C3663 efficiently induces FIP in specific-pathogen-free cats through the naturally infectious route. In this study, we employed a bacterial artificial chromosome-based reverse genetics system to gain more insights into FIP caused by the C3633 strain. We successfully generated recombinant virus (rC3663) from Fcwf-4 cells transfected with infectious cDNA that showed growth kinetics similar to those shown by the parental virus. Next, we constructed a reporter C3663 virus carrying the nanoluciferase (Nluc) gene to measure viral replication with high sensitivity. The inhibitory effects of different compounds against rC3663-Nluc could be measured within 24 h postinfection. Furthermore, we found that A72 cells derived from canine fibroblasts permitted FCoV replication without apparent cytopathic effects. Thus, our reporter virus is useful for uncovering the infectivity of type I FCoV in different cell lines, including canine-derived cells. Surprisingly, we uncovered aberrant viral RNA transcription of rC3663 in A72 cells. Overall, we succeeded in obtaining infectious cDNA clones derived from type I FCoV that retained its virulence. Our recombinant FCoVs are powerful tools for increasing our understanding of the viral life cycle and pathogenesis of FIP-inducing type I FCoV.IMPORTANCE Feline coronavirus (FCoV) is one of the most significant coronaviruses, because this virus induces feline infectious peritonitis (FIP), which is a lethal disease in cats. Tissue culture-adapted type I FCoV often loses pathogenicity, which complicates research on type I FCoV-induced feline infectious peritonitis (FIP). Since we previously found that type I FCoV strain C3663 efficiently induces FIP in specific-pathogen-free cats, we established a reverse genetics system for the C3663 strain to obtain recombinant viruses in the present study. By using a reporter C3663 virus, we were able to examine the inhibitory effect of 68 compounds on C3663 replication in Fcwf-4 cells and infectivity in a canine-derived cell line. Interestingly, one canine cell line, A72, permitted FCoV replication but with low efficiency and aberrant viral gene expression.
    展开

    关键词:冠状病毒,病毒复制,NanoLuc萤光素酶

    应用产品:Nano-Glo® Luciferase Assay

  • Discovery of a novel antiviral agent targeting the nonstructural protein 4 (nsP4) of chikungunya virus

    Virology | 2017 | 查看原文 |

    作者:Yuji Wada, Yasuko Orba, Michihito Sasaki, Shintaro Kobayashi, Michael J Carr, Haruaki Nobori, Akihiko Sato, William W Hall, Hirofumi Sawa

    摘要:Chikungunya fever (CHIKF) is caused by chikungunya virus (CHIKV) infection which is a re-emerging mosquito-borne zoonosis. At present, there are no approved therapeutics for CHIKF. Herein, we have investigated candidate compounds which can inhibit CHIKV infection. Screening of chemical compound libraries were performed and one candidate, a benzimidazole-related compound designated Compound-A was found to inhibit infection by several CHIKV strains and a Sindbis virus strain at nanomolar concentrations. To investigate the inhibitory mechanism of action, a Compound-A resistant CHIKV (res-CHIKV) was isolated and a key mutation associated with resistance was identified by reverse-genetic recombinant CHIKVs containing amino acid substitutions present in res-CHIKV. These results demonstrated that the target site of Compound-A was the M2295 residue in the nonstructural protein 4 (nsP4), which is located in one of the functional domains of RNA-dependent RNA-polymerase (RdRp). We also confirmed that Compound-A inhibits RdRp function of CHIKV by using CHIKV replicons.
    展开

    关键词:抗病毒化合物,病毒研究, RdRp抑制剂

    应用产品:Nano-Glo® Dual-Luciferase® Reporter Assay System(Add a control vector)

  • Recovery of NanoLuc Luciferase-Tagged Canine Distemper Virus for Facilitating Rapid Screening of Antivirals in vitro

    Front Vet Sci | 2020 | 查看原文 |

    作者:Fuxiao Liu, Qianqian Wang, Yilan Huang, Ning Wang , Youming Zhang, Hu Shan

    摘要:Canine distemper virus (CDV), belonging to the genus Morbillivirus in the family Paramyxoviridae, is a highly contagious pathogen, affecting various domestic, and wild carnivores. Conventional methods are too cumbersome to be used for high-throughput screening of anti-CDV drugs. In this study, a recombinant CDV was rescued using reverse genetics for facilitating screening of anti-CDV drug in vitro. The recombinant CDV could stably express the NanoLuc® luciferase (NLuc), a novel enzyme that was smaller and "brighter" than others. The intensity of NLuc-catalyzed luminescence reaction indirectly reflected the anti-CDV effect of a certain drug, due to a positive correlation between NLuc expression and virus propagation in vitro. Based on such a characteristic feature, the recombinant CDV was used for anti-CDV assays on four drugs (ribavirin, moroxydine hydrochloride, 1-adamantylamine hydrochloride, and tea polyphenol) via analysis of luciferase activity, instead of via conventional methods. The result showed that out of these four drugs, only the ribavirin exhibited a detectable anti-CDV effect. The NLuc-tagged CDV would be a rapid tool for high-throughput screening of anti-CDV drugs.
    展开

    关键词:anti-CDV,高通量筛选,发光, rCDV-Nluc,反向遗传学

    应用产品:Nano-Glo® Luciferase Assay

  • Major Capsid Protein Synthesis from the Genomic RNA of Feline Calicivirus

    J Virol | 2020 | 查看原文 |

    作者:Christian Urban, Christine Luttermann

    摘要:Caliciviruses have a positive-strand RNA genome with a length of about 7.5 kb that contains 2, 3, or 4 functional open reading frames (ORFs). A subgenomic mRNA (sg-RNA) is transcribed in the infected cell, and both major capsid protein viral protein 1 (VP1) and minor capsid protein VP2 are translated from the sg-RNA. Translation of proteins from the genomic RNA (g-RNA) and from the sg-RNA is mediated by the RNA-linked viral protein VPg (virus protein, genome linked). Most of the calicivirus genera have translation mechanisms leading to VP1 expression from the g-RNA. VP1 is part of the polyprotein for sapoviruses, lagoviruses, and neboviruses, and a termination/reinitiation mechanism was described for noroviruses. Vesiviruses have no known mechanism for the expression of VP1 from the g-RNA, and the Vesivirus genus is the only genus of the Caliciviridae that generates VP1 via a precursor capsid leader protein (LC-VP1). Analyses of feline calicivirus (FCV) g-RNA translation showed a low level of VP1 expression with an initiation downstream of the original start codon of LC-VP1, leading to a smaller, truncated LC-VP1 (tLC-VP1) protein. Deletion and substitution analyses of the region surrounding the LC-VP1 start codon allowed the identification of sequences within the leader protein coding region of FCV that have an impact on VP1 translation frequency from the g-RNA. Introduction of such mutations into the virus showed an impact of strongly reduced tLC-VP1 levels translated from the g-RNA on viral replication.IMPORTANCE Caliciviruses are a cause of important diseases in humans and animals. It is crucial to understand the prerequisites of efficient replication of these viruses in order to develop strategies for prevention and treatment of these diseases. It was shown before that all caliciviruses except vesiviruses have established mechanisms to achieve major capsid protein (VP1) translation from the genomic RNA. Here, we show for the first time that a member of the genus Vesivirus also has a translation initiation mechanism by which a precursor protein of the VP1 protein is expressed from the genomic RNA. This finding clearly points at a functional role of the calicivirus VP1 capsid protein in early replication, and we provide experimental data supporting this hypothesis.
    展开

    关键词:FCV,杯状病毒,翻译启动,病毒复制

    应用产品:pCI Mammalian Expression VectorPfu DNA PolymeraseDual-Luciferase® Reporter Assay System

  • An Aedes aegypti-Derived Ago2 Knockout Cell Line to Investigate Arbovirus Infections

    Viruses | 2021 | 查看原文 |

    作者:Christina Scherer,Jack Knowles, Vattipally B. Sreenu, Anthony C. Fredericks, Janina Fuss,Kevin Maringer, Ana Fernandez-Sesma, Andres Merits, Margus Varjak, Alain Kohl,Esther Schnettler

    摘要:Mosquitoes are known as important vectors of many arthropod-borne (arbo)viruses causing disease in humans. These include dengue (DENV) and Zika (ZIKV) viruses. The exogenous small interfering (si)RNA (exo-siRNA) pathway is believed to be the main antiviral defense in arthropods, including mosquitoes. During infection, double-stranded RNAs that form during viral replication and infection are cleaved by the enzyme Dicer 2 (Dcr2) into virus-specific 21 nt vsiRNAs, which are subsequently loaded into Argonaute 2 (Ago2). Ago2 then targets and subsequently cleaves complementary RNA sequences, resulting in degradation of the target viral RNA. Although various studies using silencing approaches have supported the antiviral activity of the exo-siRNA pathway in mosquitoes, and despite strong similarities between the siRNA pathway in the Drosophila melanogaster model and mosquitoes, important questions remain unanswered. The antiviral activity of Ago2 against different arboviruses has been previously demonstrated. However, silencing of Ago2 had no effect on ZIKV replication, whereas Dcr2 knockout enhanced its replication. These findings raise the question as to the role of Ago2 and Dcr2 in the control of arboviruses from different viral families in mosquitoes. Using a newly established Ago2 knockout cell line, alongside the previously reported Dcr2 knockout cell line, we investigated the impact these proteins have on the modulation of different arboviral infections. Infection of Ago2 knockout cell line with alpha- and bunyaviruses resulted in an increase of viral replication, but not in the case of ZIKV. Analysis of small RNA sequencing data in the Ago2 knockout cells revealed a lack of methylated siRNAs from different sources, such as acute and persistently infecting viruses-, TE- and transcriptome-derived RNAs. The results confirmed the importance of the exo-siRNA pathway in the defense against arboviruses, but highlights variability in its response to different viruses and the impact the siRNA pathway proteins have in controlling viral replication. Moreover, this established Ago2 knockout cell line can be used for functional Ago2 studies, as well as research on the interplay between the RNAi pathways.
    展开

    关键词:Ago2,Dcr2,RNAi,虫媒病毒复制,外切siRNA途径,敲除细胞系

    应用产品:Dual-Luciferase® Reporter Assay SystemNano-Glo® Luciferase AssayLuciferase Assay System

  • Nonreplicative RNA Recombination of an Animal Plus-Strand RNA Virus in the Absence of Efficient Translation of Viral Proteins

    Genome Biol Evol | 2017 | 查看原文 |

    作者:Maximiliane Kleine Büning, Denise Meyer, Sophia Austermann-Busch, Gleyder Roman-Sosa, Tillmann Rümenapf , Paul Becher

    摘要:RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5' terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins.
    展开

    关键词:牛病毒性腹泻病毒,黄病毒科,非同源,非复制性RNA重组,病毒进化

    应用产品:Nano-Glo® Luciferase Assay

  • Real-Time Visualization of the Infection and Replication of a Mouse-Lethal Recombinant H9N2 Avian Influenza Virus

    Front Vet Sci | 2022 | 查看原文 |

    作者:Guangjie Lao , Kaixiong Ma , Ziwen Qiu , Wenbao Qi , Ming Liao , Huanan Li

    摘要:H9N2 avian influenza viruses (AIVs) continuously cross the species barrier to infect mammalians and are repeatedly transmitted to humans, posing a significant threat to public health. Importantly, some H9N2 AIVs were found to cause lethal infection in mice, but little is known about the viral infection dynamics in vivo. To analyze the real-time infection dynamics, we described the generation of a mouse-lethal recombinant H9N2 AIV, an influenza reporter virus (VK627-NanoLuc virus) carrying a NanoLuc gene in the non-structural (NS) segment, which was available for in vivo imaging. Although attenuated for replication in MDCK cells, VK627-NanoLuc virus showed similar pathogenicity and replicative capacity in mice to its parental virus. Bioluminescent imaging of the VK627-NanoLuc virus permitted successive observations of viral infection and replication in infected mice, even following the viral clearance of a sublethal infection. Moreover, VK627-NanoLuc virus was severely restricted by the K627E mutation in PB2, as infected mice showed little weight loss and a low level of bioluminescence. In summary, we have preliminarily established a visualized tool that enables real-time observation of the infection and replication dynamics of H9N2 AIV in mice, which contributes to further understanding the mechanisms underlying the pathogenic enhancement of H9N2 AIV to mice.
    展开

    关键词:牛病毒性腹泻病毒,黄病毒科,非同源,非复制性RNA重组,病毒进化

    应用产品:Nano-Glo® Luciferase Assay

  • Lifecycle modelling systems support inosine monophosphate dehydrogenase (IMPDH) as a pro-viral factor and antiviral target for New World arenaviruses

    Antiviral Res | 2018 | 查看原文 |

    作者:Eric C Dunham, Anne Leske, Kyle Shifflett, Ari Watt, Heinz Feldmann, Thomas Hoenen, Allison Groseth

    摘要:Infection with Junín virus (JUNV) is currently being effectively managed in the endemic region using a combination of targeted vaccination and plasma therapy. However, the long-term sustainability of plasma therapy is unclear and similar resources are not available for other New World arenaviruses. As a result, there has been renewed interest regarding the potential of drug-based therapies. To facilitate work on this issue, we present the establishment and subsequent optimization of a JUNV minigenome system to a degree suitable for high-throughput miniaturization, thereby providing a screening platform focused solely on factors affecting RNA synthesis. Using this tool, we conducted a limited drug library screen and identified AVN-944, a non-competitive inosine monophosphate dehydrogenase (IMPDH) inhibitor, as an inhibitor of arenavirus RNA synthesis. We further developed a transcription and replication competent virus-like particle (trVLP) system based on these minigenomes and used it to screen siRNAs against IMPDH, verifying its role in supporting arenavirus RNA synthesis. The antiviral effect of AVN-944, as well as siRNA inhibition, on JUNV RNA synthesis supports that, despite playing only a minor role in the activity of ribavirin, exclusive IMPDH inhibitors may indeed have significant therapeutic potential for use against New World arenaviruses. Finally, we confirmed that AVN-944 is also active against arenavirus infection in cell culture, supporting the suitability of arenavirus lifecycle modelling systems as tools for the screening and identification, as well as the mechanistic characterization, of novel antiviral compounds.
    展开

    关键词:AVN-944,沙粒病毒,肌苷单磷酸脱氢酶(IMPDH),生命周期建模系统

    应用产品:Nano-Glo® Luciferase AssayGlo Lysis Buffer, 1X

  • An Engineered Virus Library as a Resource for the Spectrum-wide Exploration of Virus and Vector Diversity

    Cell Rep | 2017 | 查看原文 |

    作者:Wenli Zhang, Jun Fu, Jing Liu, Hailong Wang, Maren Schiwon, Sebastian Janz, Lukas Schaffarczyk, Lukas von der Goltz, Eric Ehrke-Schulz , Johannes Dörner, Manish Solanki, Philip Boehme, Thors

    摘要:Adenoviruses (Ads) are large human-pathogenic double-stranded DNA (dsDNA) viruses presenting an enormous natural diversity associated with a broad variety of diseases. However, only a small fraction of adenoviruses has been explored in basic virology and biomedical research, highlighting the need to develop robust and adaptable methodologies and resources. We developed a method for high-throughput direct cloning and engineering of adenoviral genomes from different sources utilizing advanced linear-linear homologous recombination (LLHR) and linear-circular homologous recombination (LCHR). We describe 34 cloned adenoviral genomes originating from clinical samples, which were characterized by next-generation sequencing (NGS). We anticipate that this recombineering strategy and the engineered adenovirus library will provide an approach to study basic and clinical virology. High-throughput screening (HTS) of the reporter-tagged Ad library in a panel of cell lines including osteosarcoma disease-specific cell lines revealed alternative virus types with enhanced transduction and oncolysis efficiencies. This highlights the usefulness of this resource.
    展开

    关键词:腺病毒,工程化的腺病毒文库,双链DNA病毒,天然病毒多样性,翻译

    应用产品:Nano-Glo® Luciferase Assay

筛选项
清空
研究/应用方向
产品/技术
取消
确认